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A Grand Convergence

Complex
Biological Systems

Modern Computing

Systems biologyGenetics, genomics



The big questions

• What are the major computational problems in
biology facing us?

•  Which ones require extreme computing – that is,
that we can’t solve otherwise?

• Do we have the means to attack these problems?



My main points
• Global systems approaches to biology are essential
• Interconnectedness of components is extreme

• Predictive quantitative models are important, but the
first important challenges are not  in the models, but
rather…

• In the synthesis, integration and analysis of data:
– comparative genomics &  proteomics, metabolomics
–   network comparisons -- evolutionary questions
– genetics & gene interactions
–  Putting it all together and iterating models (a very hard

problem)
• Computing in the design of new experiments



Biological Systems
Dynamic Networks

• Elements (genes, proteins, miRNAs,
metabolites, complexes, cells,
organs…..) – “nodes”

• Interactions between the elements –
“edges”—dynamic (directed, undirected)

• Structure of network is also dynamic!

• Elements and their interactions are
affected by the Context of other
systems within--cells and organisms

• Interactions between/among elements
give rise to the system’s Emergent
properties

• Unique features
– Global character is essential
– Integration of different data types
– Millions to billions of data

measurements per experiment



Data gathering technologies
exponential increases in capacity

• Sequencing and molecule-counting
transcriptomics:
– Next generation: 454, Solexa, ABI
– Next-next generation: Helicos & PB …

• Single molecule fragment sequencing,
• High degrees of multiplexing

• Proteomics
– High-end MS
– Protein chips (PCA’s on nano sized

arrays)
– Nano-wires, SPR etc..

• Prediction: human genome for ~$5K
next year
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• mRNA levels (in time and space)
– lambdas and ratios

• Protein levels (in time and space)
– Protein probabilities (protein

prophet)
– ASAP ratios
– Peptide counts

• Protein associations
– functional

relationships/associations
(phylogenetic pattern)

– genome organization (operons,
chromosomal proximity)

• Protein-protein interactions
(MS/MS)
– Protein probabilities (protein

prophet)
– ASAP ratios
– Peptide counts

• Cellular Structure
– Images
– Cellular fractionation

Data Types
• Protein-DNA interactions (ChIP-

chip, seq)
– lambdas and ratios
– genome localization

• Chromatin structure in nucleus
• Gene function annotations

– Pfam domains
– COGs
– Protein Structure
– TIGRFam

• Metabolic pathway dynamics
• Phenotypes

– Growth/survival, apoptosis
– Cell morphology
– Structure based: imaging (organelle

localization etc.)
• Regulatory networks

– Cis-regulatory motifs
– Co-regulated gene profiles
– Protein interactions/associations
– Regulatory relationships
– Cell-cell signalling networks



Major Computational Challenges
• Define the key problems well
• Approaches to dimension

reduction in analysis of
biological data

• Understand the uses of
models vs data analysis

• Key issues:
– Amount and types of data
– Complexity & interrelatedness

• Cell type specificity
• Cell-cell interaction complexity
• Dynamical complexity

– Genetics !

Need tools to match the problems!Need tools to match the problems!



Three insidious problems

• Dynamics of networks includes
structure – feedback on network
structure

• Genetic interactions are dominant.
Genetic variation modifies the systems
in what ways?

• There are large numbers of weak
effects.



Separate miRNA genes

Co-transcribed miRNA genes

A Poorly understood System
~1000 microRNAs in Mammals

           Some Problems
•  Regulatory targeting not

well understood
•  Multiple miRNAs reg. same
       gene
•  Modifications of miRNA can
       change functions



microRNA pathways
miRNA gene  (~1/2 are within protein coding genes)

Pri-miRNA 

Pre-miRNA  

miRNA-duplex (miRNA-miRNA*)  

Mature miRNA-RISC
 complex, Argonaute  

miRNA* degradation  

Pol II transcription

Drosha cleavage,
DGCR8

Export from nucleus
Exportin 5/RanGTP

Dicer cleavage, TRBP

miRNA* export      miRNA export  

helicase

Regulation

Regulation

Regulation

Nucleus

Cytoplasm

  mRNA regulation
• RNA stability
• Translation reg.
•  Methylation
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Drosha Dicer

Processing of Pre-miRNA and Consequences
Structure is drawn for perfect base-pairing

Modification of regulatory Functions
•  Several miRNA from same gene (processing)
•  Modification and editing of miRNAs
•  Strand switching from miRNA to miRNA*



Three insidious problems

• Dynamics of networks includes
structure – feedback on net work
structure.  Example: miRNAs

• Genetic interactions are dominant.
Genetic variation modifies the systems
in what ways?

• There are large numbers of weak
effects.



• Pairwise perturbation of genes
• Two genes combine to affect phenotype
                                               (Hereford & Hartwell, 1974)

• Types of interactions can reveal network structure
• Non-additive effects
• Synthetic lethals
• Epistasis
• Multicopy supression

• Loss-of-function, gain-of-function, dominant-negative, etc.
• Interaction depends on phenotype measured!

Genetic Interactions
little understood, poorly integrated
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Invasion Assay

Repeated for ~2000 genetic interactions

Genetic Interaction Study in Yeast

Drees, Thorsson, Carter, et al., Genome Biol. 2005

flo11  =  flo11 sfl1  <  WT  <  sfl1

Interaction:

Pathway Interpretation: InvasionSFL1 FLO11



Distribution of  Types ofInteractions

Yeast invasion network
~2000 tested interactions

among 130 genes

Genetic Interaction Network Example

Galitski & Carter, ISB



Data Sets

Drees, et al. Genome Biology 2005

130 genes, ~2000 pairs tested

St. Onge, et al. Nature Genetics 2007

26 genes, 325 pairs tested

Invasion data MMS fitness data



STE20 and STE12 are
mutually informative (p

= 10-16)

Mutual Information & Set Complexity

Modular
maps

Gene pairs that exhibit systematic interaction patterns

Ψ =  Σ   Ki mij (1 – mij )

Ki  is the information of element i,
mij  is the mutual information
 between i and j,  

   0 ≤ mij ≤ 1  and  0 ≤ Ψ ≤ 1

Galas et al.,  IEEE Transactions in Information Theory (2009)



Understanding Gene interactions
independent test against “biological information”

             BIOLOGICAL INFORMATION
•A biological statement is a result of the
interaction classes and annotation information
on the genes (from database)

• These statements are real biological
   information derived from the classifications
•  The number of biological statements is

      proportional to Ψ!

MMS fitness:
116K possible networks

 (all classifications of 10 interactions on 26 genes)

Ψ

No. statements



cAMP-mediated signaling

MAP kinase
signaling

Mutual information in the yeast invasion network

original network (Ψ = 0.57)

maximally complex network (Ψ = 0.79)

“Maximally Complex” Networks

Carter, Galitski & Galas, Plos Comp Biol (2008)



Integration:
gene interaction to molecular interactions

functional 
influences
Network
(from time series
 global expression,
Genetic interactions)

physical 
molecular
network

integrated
network

Generate molecular hypotheses for information flow

example: expression of DDR48

p-DNA
p-p

phos

Carter, et al., Genome Res. 2006
Carter, et al., Mol. Syst. Biol. 2007



DDR48 expression determined by >10 genes

Genetic loci

• 2 variants for each gene in population
• There are 1000 combinations 
• One quantitative phenotype



Three insidious problems

• Dynamics of networks includes
structure – feedback on net work
structure.  Example: miRNAs

• Genetic interactions are dominant.
Genetic variation modifies the systems
in what ways?   Examples: Gene
interaction networks

• There are large numbers of weak
effects.



Genome-wide Dosage Suppression Network

• An unexpectedly rich view of the network of genes
regulating cell cycle

• Studies the plasticity of network function
• Reveals normally weak network interactions

Dosage Suppression

Wild type
Gene X

Mutant
Gene x

Increased
Activity of 
Gene Y(Usually ts

Lethal)



Conditional mutants

Grow at permissive conditions

Transform with  MORF Plasmids

( Whole genome ORF collection under
Gal control)

Plate cells and allow them to recover in
selective media/permissive temp.

Scrape and pool all transformants

Plate cells in inducing media and shift
to restrictive conditions

Yeast cells grow if mutation is suppressed!

Suppressor
identification



Cell Cycle
cak1-23 cdc48-9 (Y-F)

cdc123-4 cdc5-1

cdc13-1 cdc6-1

cdc15-2 cdc7-1

cdc16-1 cdc9-1

cdc20-1 cks1-35

cdc24-H ctf13-30

cdc25-1 kin28-ts

cdc2-7 med11-ts

cdc28-td med4-6

cdc33-E72G mms21-1

cdc35-1 pob3-7

cdc36-16 pol5-2

cdc37 pti1-ts7

cdc39-1 rad3-ts14

cdc40-ts rsp5-1

cdc4-1 smc2-8

cdc45-27 spt6-14

cdc46-1 taf12-9

cdc47 tfb3-ts

RNA-related
abd1-5 mcm10-1

abf1-102 mcm2-1

afg2-18 mot1-1033

arp4-G161D nab3-11

arp7-E411K nog2-1

cft2-1 nop2-3

cus1-3 orc2-1

dbf2-1 orc3-70

dbp5-1 pcf11-ts10

dcp2-7 prt1-1

ded1-199 rap1-1

dim1-2 rat1-1

esa1-L254P rnt1-ts

ess1-H164R rsc3-1

fcp1-1 spt15-P65S

gcd10-506 sup35-td

gcd1-502 swd2-1

hsf1-848 tfc1-E447K

hts1-1 tor2-21

hyp2-1 yef3-F650S

80 ts strains



Multi-copy supression (MCS)

 ~70% of genes tested could not be supressed

Examples of the 30% that did

      Mutant        Number of MCS genes
trm4Δ trm8Δ   4
prp3-1   7
rpb1-1   1
prp8-1   6
nup116Δ   2
prp16-1   1
prp11-1   5
prp21-1 12



Dosage suppressor network (FIBR+SGD) involving cdc
& related mutant nodes screened by FIBR



Network of shared suppressors
of cell cycle related mutants



A SUMO Ligase substitutes for Ubitquitin Ligase



Some Computational and Mathematical Challenges
1. How to do all-vs-all comparisons of many 1000s of human genomes,

proteomes etc…

• How to infer phenotype from genotype

• Understand the noise, biological and measurement induced

2. How to integrate multiple high-throughout data types, including images and
structure

3. How to visualize & explore large-scale, multi-dimensional biological data

4. How to infer protein, miRNA and gene regulatory networks from genetic,
expression, etc.. Highly heterogeneous data

• How to find the common core and the significant genetic variants

• How to attribute differential effects to the alleles

5. How to build useful, predictive models across multiple scales of time & space,
and connect logically to large data sets



 Dynamics of PrP network in Mouse brain
 6 to 22 wks



Three insidious problems

• Dynamics of networks includes
structure – feedback on network
structure

• Genetic interactions are dominant.
Genetic variation modifies the systems
in what ways?

• There are large numbers of weak
effects.



Our challenge
to focus on the right problems
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